Immunosuppression Minimization in Pediatric Kidney Transplantation

> William Harmon, M.D. Boston Children' s Hospital Harvard Medical School

> > Suzdal, Russia June 15, 2013

William Harmon Disclosures

- I currently receive research support from:
 - National Institutes of Health (NIH)
 - Bristol Myers Squibb
 - Genzyme/Sanofi
- I receive honoraria from:
 - Springer
 - Up-To-Date
- I am an unpaid consultant to
 - Genzyme/Sanofi
 - Bristol Myers Squibb

ESRD in Children

- What are the options for treatment?
 - Conservative management
 - Too late
 - Regeneration
 - Too early
 - Chronic Dialysis
 - Kidney Transplantation

Chronic Dialysis

• Pro:

- Technical problems have been alleviated
- Rehabilitation has been enhanced with EPO and rhGH
- Recurrent disease is irrelevant
- Some progress is being made with nightly HD, making treatments less onerous on daily schedules

Chronic Dialysis

• Con:

- Treatments do not correct uremia
 - Growth and development are inhibited
- Treatments are always dependent on access
- Treatments interfere with daily schedule
- Recurrent treatments lead to shortened life-span and decreased graft survival
- There has been no true technical break-through in over a decade

Kidney Transplantation

• Pro

- Restores normal renal function
- Provides best setting for growth and development
- Has had multiple continuous improvements in past 3 decades
- Has very low mortality rate
- Children can have the best outcomes

Kidney Transplantation

• Cons

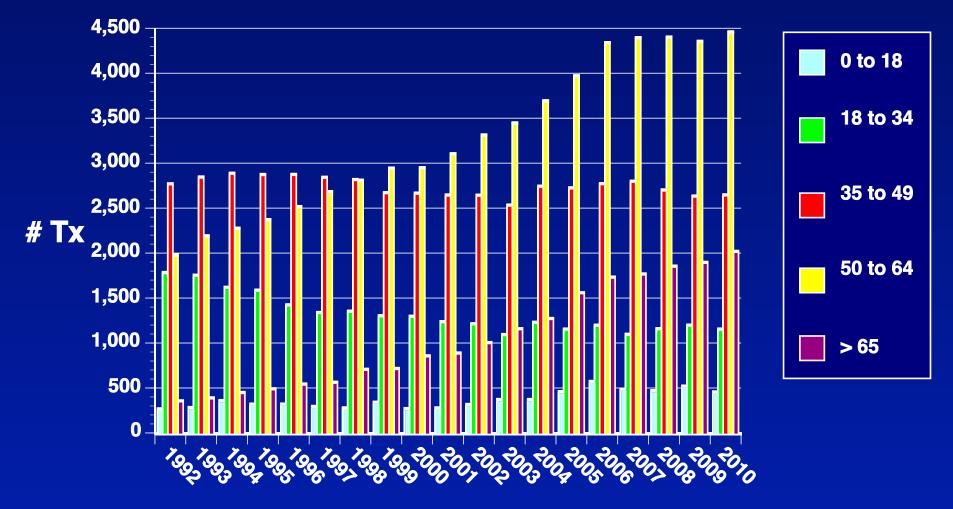
- Is not a "cure", requires continuous treatment and eventually fails
- Chronic immunosuppressive medications have serious side effects
 - Infection, Cancer and Cardiovascular disease
- Recurrent disease is possible
- Success requires substantial adherence

How Do Children and Adults Differ?

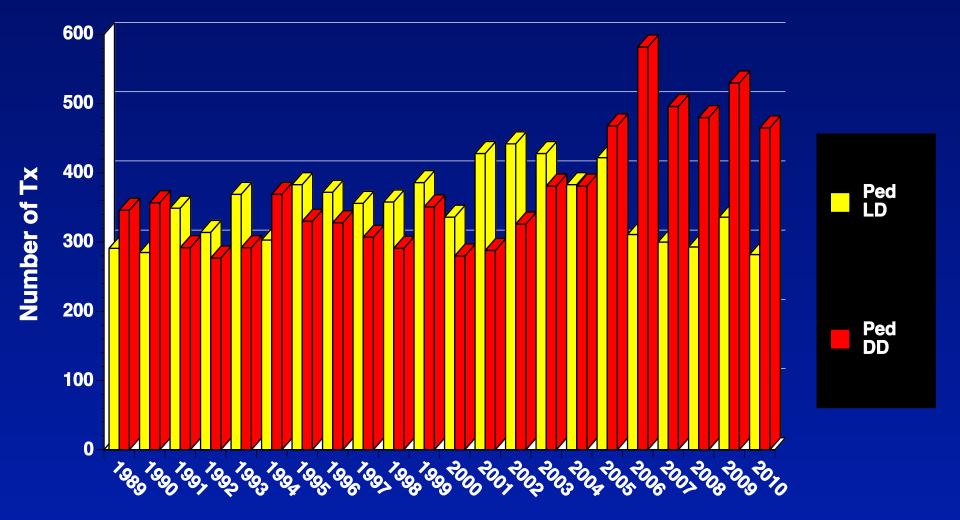
- Children are generally smaller than adults
- Children will, on average, live longer than adults
- Children are constantly maturing: ie they are supposed to grow and develop
- Children's immune response is diminished early in life, but then becomes "average"

How Do Children and Adults Differ?

- Children are biologically naïve:
 - They are less likely previously to be sensitized
 - They are less likely previously to have been exposed to infections
- Children frequently have inherited or congenital causes for organ failure that won't recur in a transplanted organ
- Children are vulnerable and protected by society


Outline

- Demographics of Chronic Kidney Disease and Transplantation in Children
- Recent experimental studies
- Current practices of renal transplantation in children
- Unresolved problems


Waiting List by Age

Deceased Donor Transplants by Age

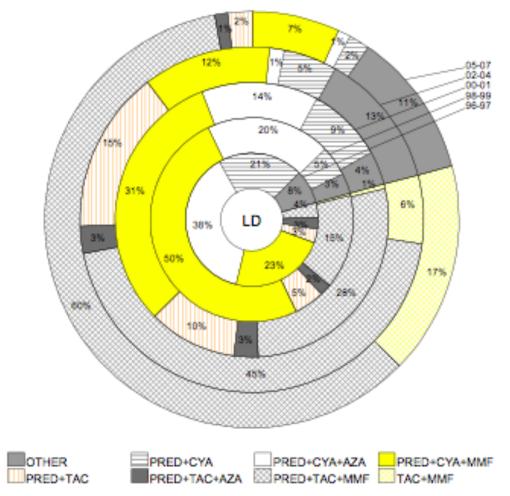
Pediatric Living and Deceased Donor Kidney Transplants by Year

NAPRTCS

Demographics of pediatric renal transplant recipients by age

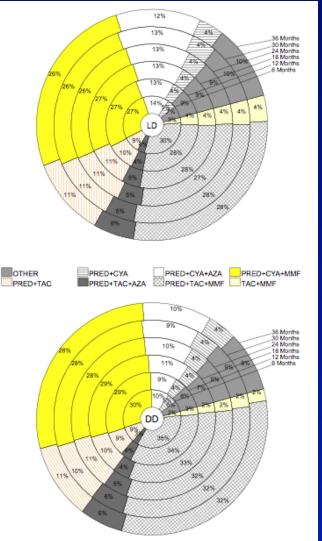
	0-1	2-5	6-12	13-17	>17
Male	68%	68%	60%	56%	54%
Female	32%	32%	40%	44%	46%
White	79%	65%	64%	60%	55%
AA	7%	14%	13%	18%	25%
Hispanic	10%	14%	16%	16%	13%
Other	4%	6%	6%	6%	6%

Etiology of E.S.R.D. in children and adults

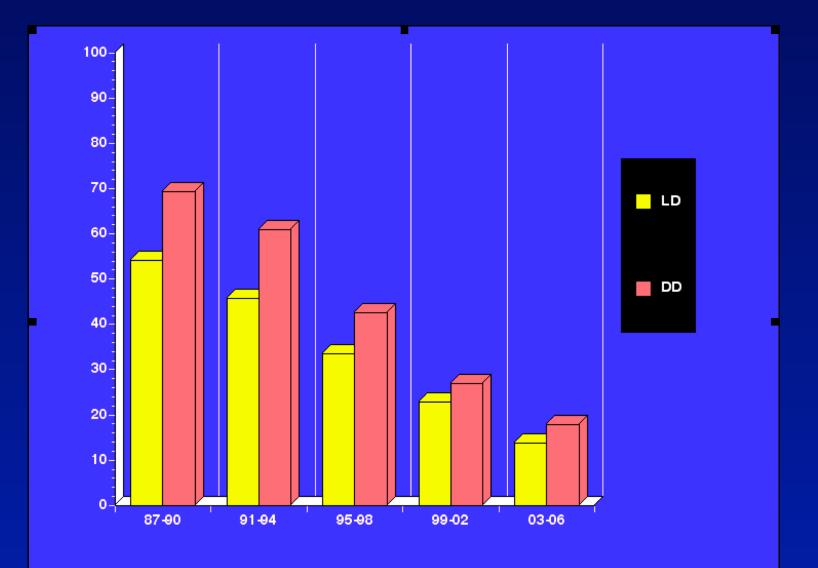

Etiology of ESRD in Children and Adults

Disease Category	<u>Children (<18)</u> *	<u>Adults (20-64)</u> +
Renal Dysplasia	17%	0.3%
Urologic	26%	4%
Other Congenital	15%	5%
FSGS	11%	2%
Other GN/Immunologic	14%	17%
Hypertensive Nephropa	thy 0%	22%
Diabetic Nephropathy	0.1%	40%

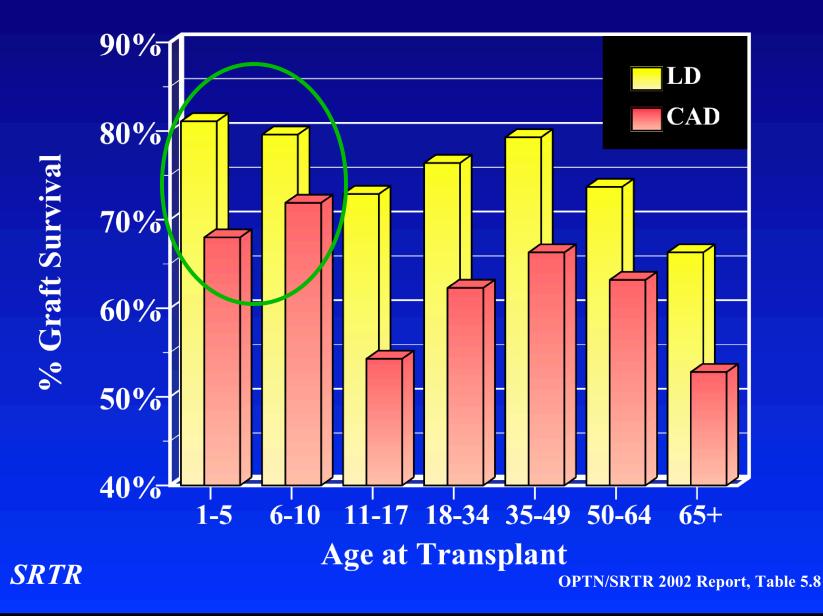
***Source: NAPRTCS**

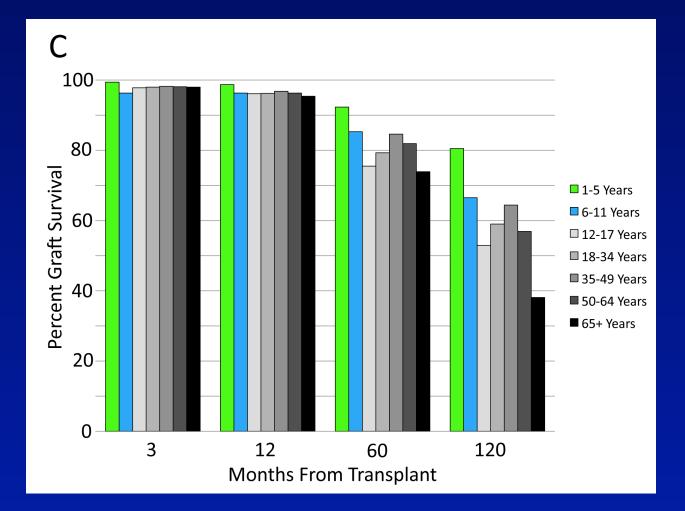

***Source: USRDS**

Pediatric Living Donor Kidney Transplant Immunosuppression (a) Day 30

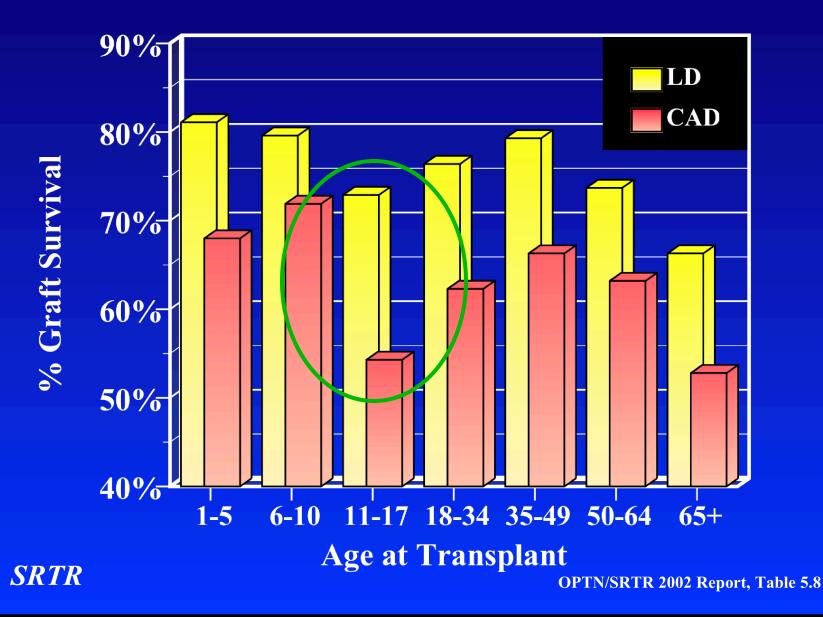


Pediatric Kidney Transplant Immunosuppression Follow-Up

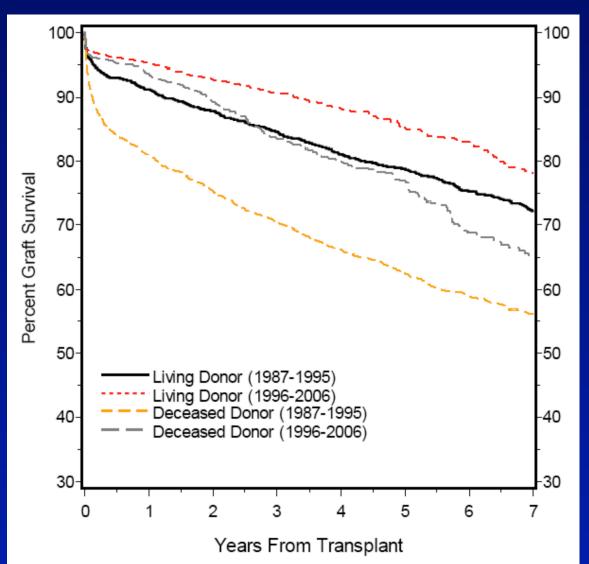

Acute Rejection Rates by Era


NAPRTCS 2007

5-Year Graft Survival by Recipient Age

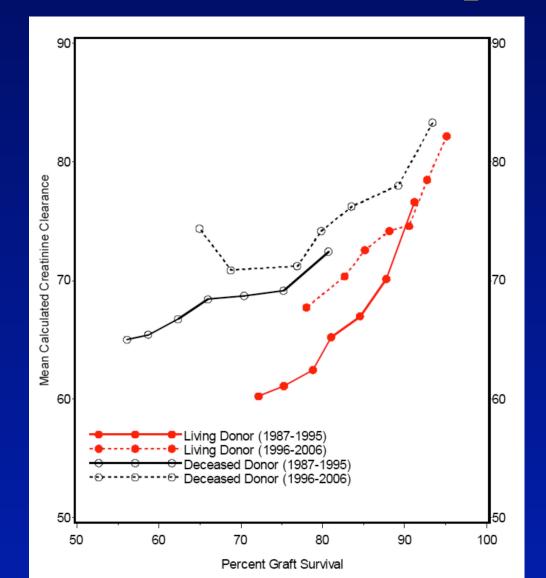


Kidney Graft Survival by Age



Young children have the best long-term graft survival of all age groups

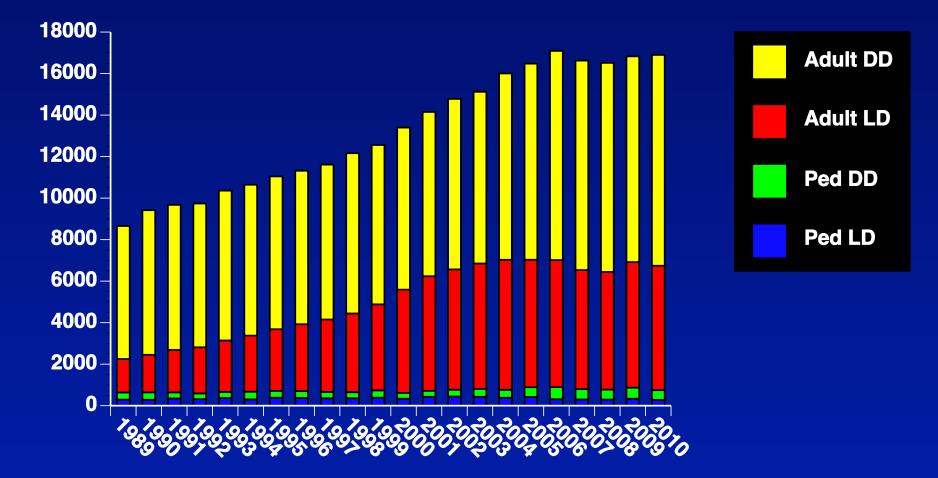
5-Year Graft Survival by Recipient Age



Pediatric Kidney Transplant Survival

NAPRTCS 2007

Graft Function and Survival at Annual Follow-up



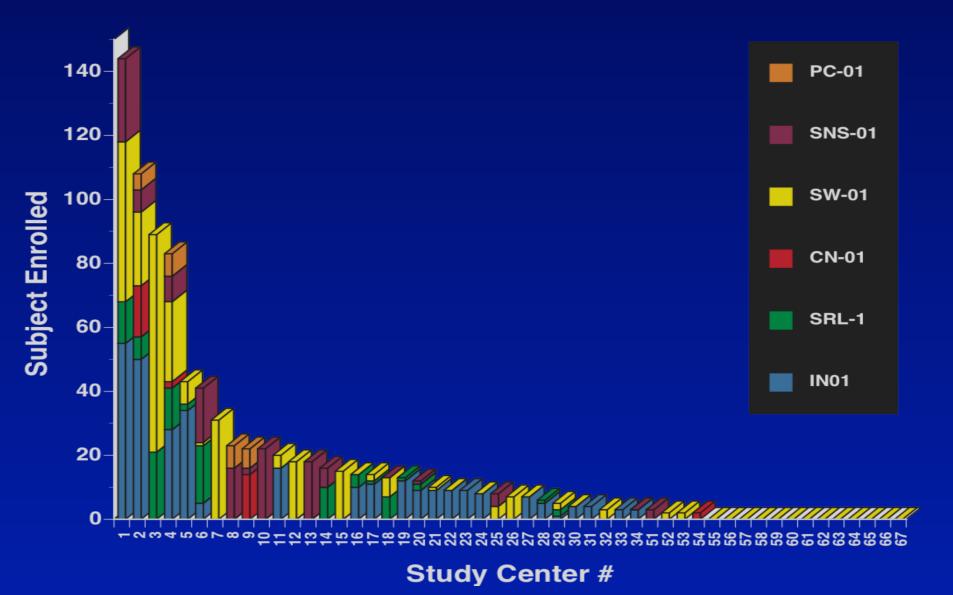
NAPRTCS 2007

Pediatric Kidney Transplant Outcomes

- As with adults, short-term outcomes of pediatric kidney transplants have improved and are excellent.
- Young children are low risk and have the best outcomes of all age groups.
- Adolescents are a high-risk age group.
- Long term outcomes have not improved and are particularly important for children because their mortality rates are low.
- GFR (graft function) deteriorates constantly.

Why do Pediatric Studies Require Multi-Center Study Groups?

Two USA Pediatric Organizations


• CCTPT?

• CTOT-C?

What is CCTPT?

- Cooperative Clinical Trials in Pediatric Transplantation
 - Funded through NIAID
 - U-01 mechanism
 - Clinical trial
 - Mechanistic or other basic studies
 - Total funding \$2.5M/year for 4-5 years for 2 centers
 - Began 1994 Ended 2008

NAPRTCS/CCTPT Transplant Studies

What is CTOT-C

- Clinical Trials in Organ Transplantation in Children
- U-01 to replace CCTPT, begin 3/08
- 4 Consortia Funded
 - 2 Kidney:
 - Harmon: 6 Center
 - Kirk: 3 Centers
 - 1 Lung: Sweet, 6 Centers
 - 1 Heart: Webber, 6 Centers

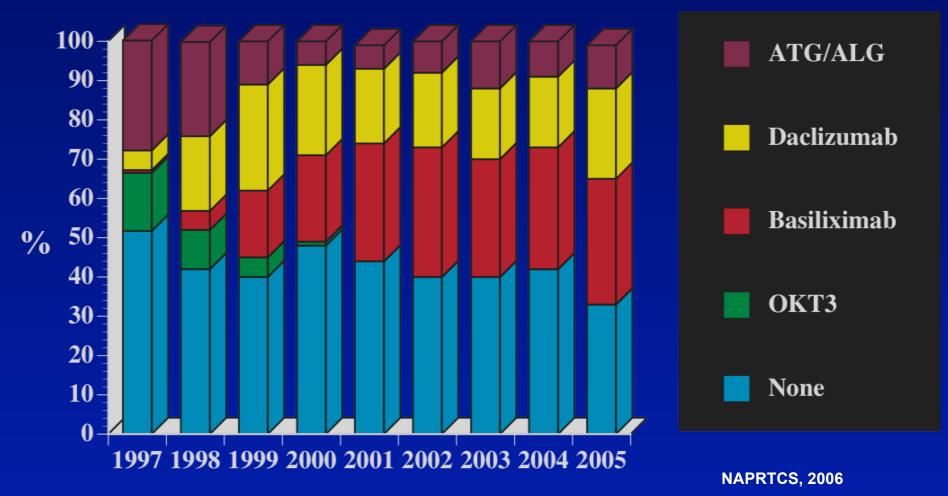
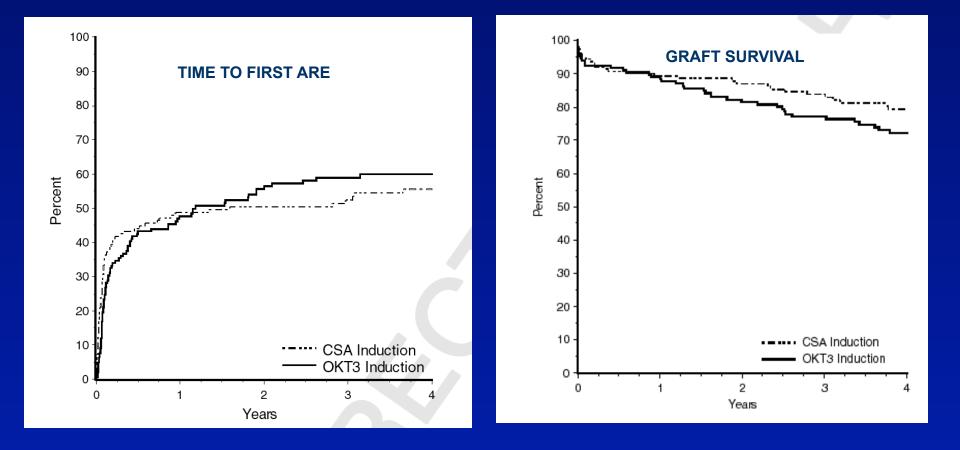
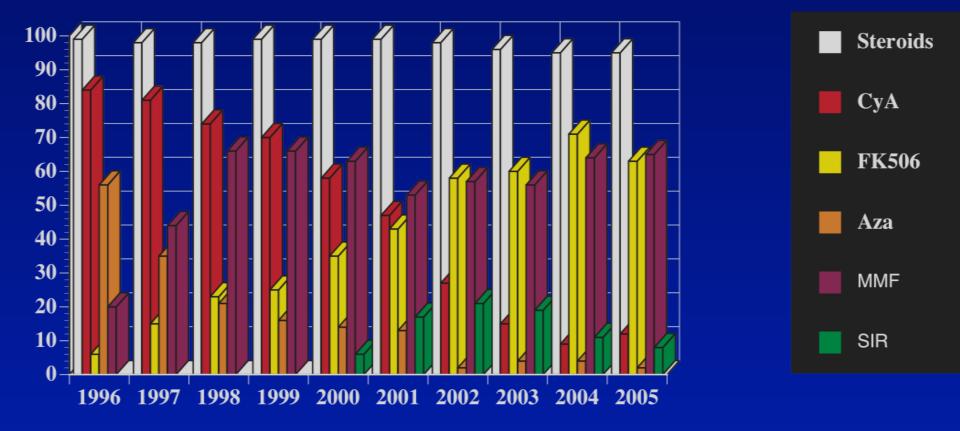

Pediatric Kidney Transplant Controlled Trials

Table 1. Recent randomized prospective multicenter trials in pediatric kidney transplantation.						
Trial name	Purpose	Reference group immunosuppression (n)	Study group immunosuppression (n)	Conclusion/ comments		
IN01 ⁹⁵	Efficacy of OKT3 induction and double blind comparison of Neoral to Sandimmune	Cyclosporine A induction, oral cyclosporine, anti- metabolite, steroids (n=140)	OKT3 induction, oral cyclosporine, anti- metabolite, steroids (n=147)	No differences between groups in any parameters		
SW01 96	Late steroid withdrawal	Basiliximab, tacrolimus, sirolimus, steroids (n=73)	Withdrawal of steroids after 6 months post- transplant (n=59)	Significantly better height velocity and graft survival in study group but study stopped early due to excessive PTLD in both arms		
Late steroid withdrawal study ⁹⁷	Safety of late steroid withdrawal	Cyclosporine A, mycophenolate, steroids (n=21)	Withdrawal of steroids after 1-year post-transplant (n=21)	Significantly better catch up growth, less hypertension and less frequent dyslipidemia in the steroid withdrawal group		
FDCC ⁹⁸	Basiliximab induction efficacy in children	Cyclosporine A, mycophenolate, steroids and placebo (n=92)	Basiliximab, cyclosporine A, mycophenolate, steroids (n=100)	No significant difference in acute rejection rates between the groups		
TWIST ⁶⁸	Efficacy and safety of early steroid withdrawal	Tacrolimus, mycophenolate, steroids (n=98)	Tacrolimus, mycophenolate, steroids till day 4 only, 2 doses only daclizumab (n=98)	Significantly improved height growth in study group, more so in pre-pubertal.		
SNS01	Efficacy and safety of steroid avoidance	Daclizumab 5 doses, tacrolimus, mycophenolate, steroids (n=65)	Daclizumab 9 doses, tacrolimus, mycophenolate (based on Stanford protocol; (n=65) ^{65,69}	Study results not yet published		

Pediatric Kidney Transplant Pilot Trials

Table 2. Other prospective multicenter trials in pediatric kidney transplantation.					
Trial	Purpose	Immunosuppression (n)	Comments		
Tricontinental study ⁶⁴	Efficacy and safety of mycophenolate mofetil suspension	Cyclosporine A, mycophenolate, steroids (n=100)	Drug well tolerated, low rate of withdrawal		
CN01 study ⁹⁹	Pilot trial of calcineurin avoidance	Anti-IL2RmAb, sirolimus, mycophenolate, steroids (n=34)	Rates of graft survival and acute rejection similar to other protocols		
FDCC subgroup study ¹⁰⁰	Compare fixed dose versus concentration controlled mycophenolate dosing	Cyclosporine A, mycophenolate, steroids (n=62)	Younger children (< 6) had numerically higher rates of leucopenia and diarrhea, but overall well tolerated		
PC01?	Steroid Avoidance and CNI withdrawal	Campath Mycophenolate Tacrolimus to Sirolimus (n=35)	Generally successful with excellent function and histology		
CTOTC-01	Monotherapy	Mycophenolate withdrawal to Sirolimus Monotherapy	In progress (4/7)		
CCTPT-02?	Long-term impact of donor specific anti- HLA antibody development	Any	In progress (5/118)		


Pediatric Renal Transplantation Induction Antibody Use


CCTPT IN-01 STUDY

- Randomized, controlled trial
- 287 subjects enrolled
- OKT3 Induction vs IV Cyclosporine
- Maintenace Immunosuppression
 - Cyclosporine
 - Azathioprine/MMF
 - Corticosteroids

CCTPT IN-01 STUDY

Pediatric Renal Transplant Immunosuppression @ 30 Days

Research proposals

- Decrease or eliminate toxic medications
 - Diminish toxic effects without adversely affecting outcome
- Immunologic monitoring
- Mechanistic studies
- Is there something we can do for adolescents?

Which immunosuppressives should we eliminate?

- Corticosteroids:
 - Cushingoid appearance, obesity
 - Hypertension, Hyperlipidemia
 - Steroid diabetes
 - Aseptic necrosis, Osteoporosis
 - Growth failure

Which immunosuppressives should we eliminate?

- Calcineurin inhibitors
 - NEPHROTOXICITY
 - Neurotoxicity, hepatotoxicity
 - Hypertension, hyperlipidemia
 - Cosmetic issues
 - Steroid diabetes
 - ?PTLD risk

Recent Studies

- NAPRTCS/CCTPT Steroid Withdrawal (SW-01)
- NAPRTCS/CCTPT Calcineurin Inhibitor Avoidance (CN-01)
- CCTPT Steroid Avoidance Protocol (SNS-01)
- NAPRTCS/CCTPT Campath Induction (PC-01)

NAPRTCS/CCTPT SW-01

- Randomized, controlled, double-blind trial of steroid withdrawal
- Primary LD or CD recipients
- Initial Immunosuppression: αIL-2r, Pred, Rapa, FK/CyA for 6 months
- Biopsy at 6 months: Randomize if no rejection
- Randomize to Taper to 0 vs Daily Low Dose

NAPRTCS/CCTPT SW-01

- 274 of 300 Patients enrolled by August, 2004
- Enrollment closed August, 2004 for PTLD rate

SW-01 Results

- 274 Subjects enrolled
- Acute rejection rate 13.8%
- Subjects who had steroids withdrawn had:
 - Lower rate of late acute rejection
 - Same 3-year patient and graft survival
 - *Possibly better* growth rate

Than the control group

PTLD in SW-01

• Rate was:

- -12% in 0-5 year olds
- -7% in 6-10 year olds
- 3% in 11-17 year olds
- -0% in >17 year olds
- Prophylaxis and enhanced observation were not prescribed by original protocol
- Most patients treated by decreasing immunosuppression alone

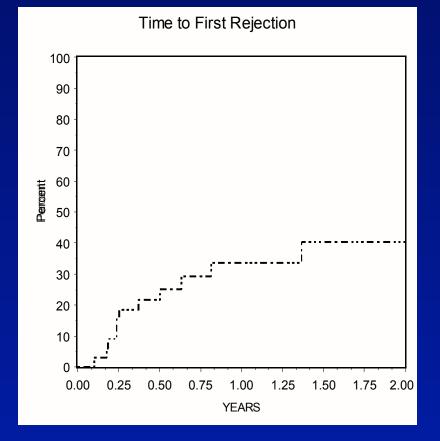
Our conclusions from SW-01

- This was first controlled trials demonstrating that steroid withdrawal is possible in children
- We have left withdrawal group on CNI + Rapa and have weaned control group off of steroids
- IL2r antibody, steroids, CNI and Rapamycin are too immunosuppressive in at-risk population
- Pediatric immunosuppression trials must include strategies for PTLD avoidance

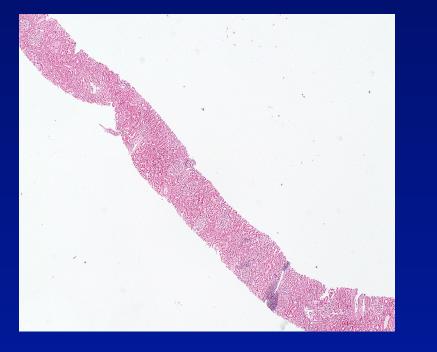
CN-01 Study Design

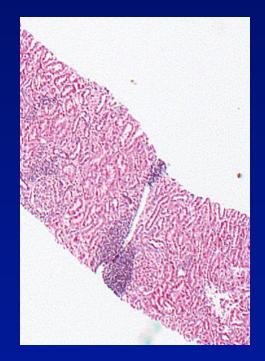
- Single-arm pilot trial of calcineurin inhibitor avoidance
- 35 pediatric living donor kidney transplants
- 4 Centers
- CCTPT oversight
- Primary objective: To determine if rejection risk is sufficiently low to permit use of this protocol in children: Acute rejection rate at 6 months

CN-01 Clinical Protocol

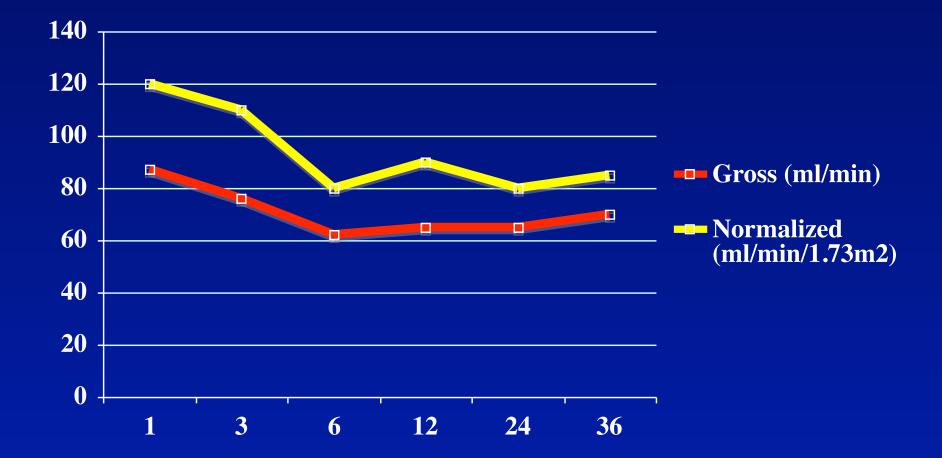

- Eligibility: 1st or 2nd Living donor transplant
- Immunosuppression
 - Daclizumab 5 doses
 - Sirolimus to target levels (25 -> 15 ng/ml), dosage bid
 - MMF at 1,200 mg/M²/day, divided bid
 - Prednisone tapered to QOD dose
- Biopsies at 0, 3, 6, 12 months
- Mechanistic studies

Acute Rejections


- 11/33 subjects had 14 ARE


 11 acute cellular
 2 acute/chronic
 1 acute cellular/vascular

 14 treated with pulse steroids
 - 3 received antibody Rx
 - 2 converted to FK


Surveillance Biopsies

• Many of the infiltrates were not associated with tubulitis or vasculitis and resolved spontaneously

Measured GFR

CN-01 Summary

- This calcineurin inhibitor avoidance protocol resulted in excellent short-term patient and graft survival and GFR
- The acute rejection rate was high

 More robust induction might be beneficial
- Complications included some cases of lymphocele and poor wound healing. Also, GI disturbance was frequent.

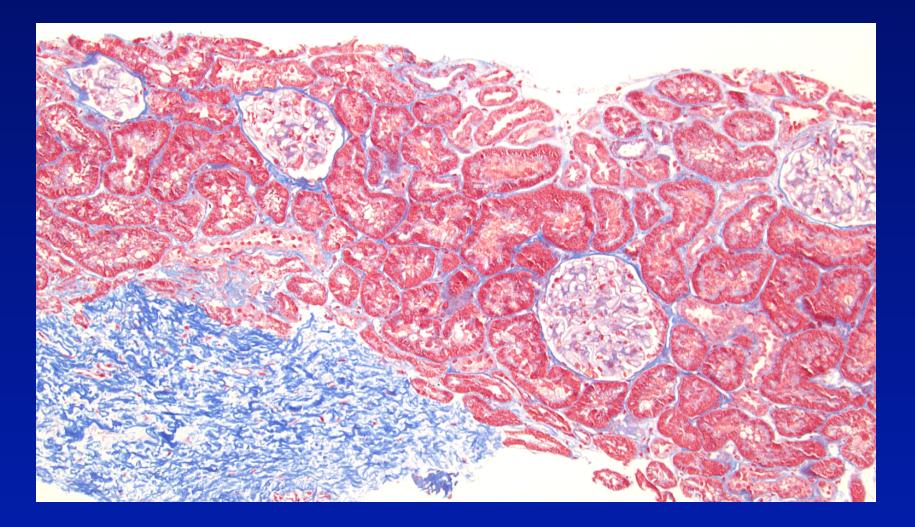
CCTPT: Steroid Avoidance SNS-01

Steroid No Steroid (SNS): Controlled trial to test Stanford Steroid Avoidance Pilot

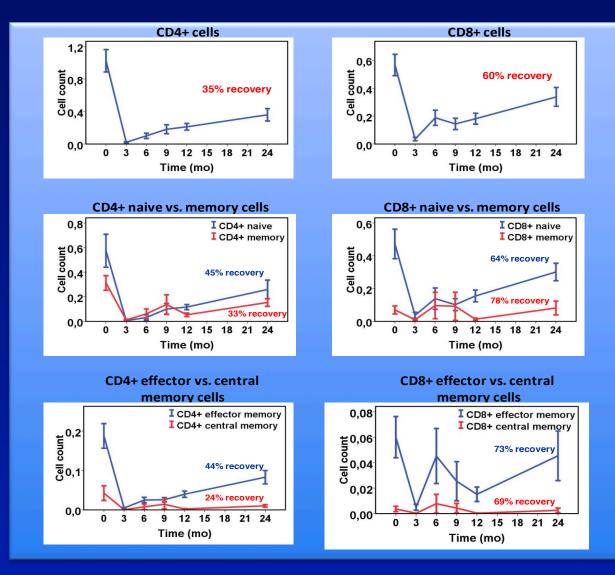
- 120 Primary LD and CD primary transplants
- Randomized at entry
- Group 1: α IL-2r x 6 months, FK, MMF
- Group 2: αIL-2r x 2 months, FK, MMF, low dose Pred
- Outcomes: Rejection, growth, etc
- 1-2 year

CCTPT: SNS-01

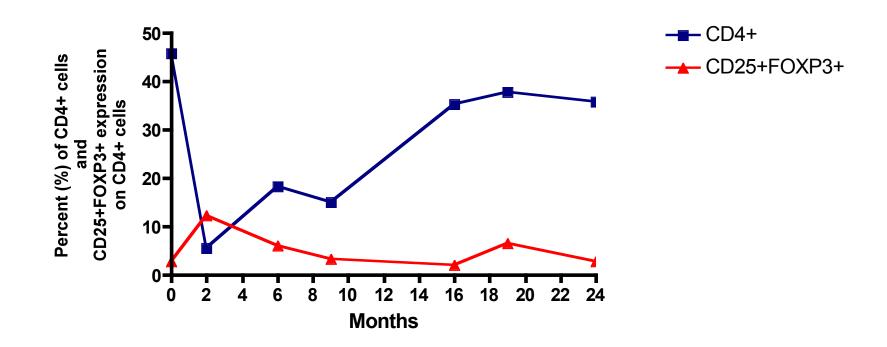
- Enrollment closed 8/2006
 130 recipients from 12 sites
- Results
- Acute rejection rate is ~20% in experimental and control groups
 - Patient and graft survival is excellent
 - Growth rate not yet improved in experimental group


CCTPT: Campath Induction PC-01

- 35 patients in a pilot trial from 4 sites
- Campath 1-H induction (2 doses)
- MMF and FK for 2-3 months
- Convert FK to Rapa after 2-3 months
- Steroid Avoidance and CNI withdrawal
- Protocol biopsies and mechanistic studies


PC-01 Results

- 35 Subjects enrolled
 - 1-year follow-up
 - 6 Acute Rejections (17%)
 - -4 with Clinical Acute Rejection
 - -2 with Sub-clinical Acute Rejection
 - 2 Gaft losses: Recurrent FSGS and nonadherence
 - No deaths, no serious infections
 - No PTLD
 - Most important complication is leukopenia


CCTPT: Campath Induction PC-01

T Cell Recovery After Alemtuzumab in Children

Percent of circulating Tregs in peripheral blood

Comparison between Pediatric and Adult Data

Pediatric

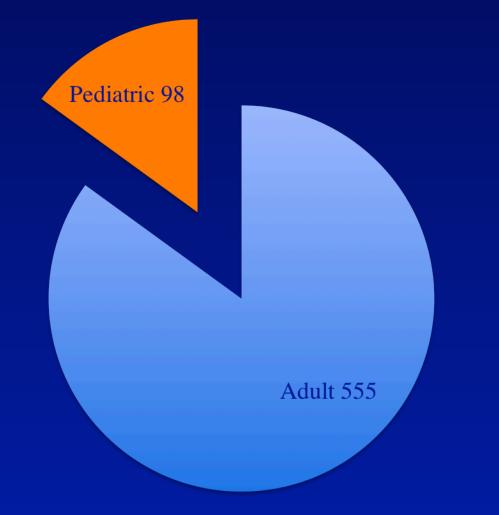
- Profound depletion of both CD4+/CD8+ T cells.
- CD4+ T cells recovered at ~18 months post-tx.
- CD8+ T cells return to baseline at 6 months.
- * Depletion of both memory and naïve T cells with quicker recovery of naïve T cells.
- * Memory T cells spared were mostly effector (Tem) in comparison to central memory (Tcm).

<u>Adult</u>

- Profound depletion of both CD4+/CD8+ T cells.
- CD4+ T cells still reduced at 15 months post-tx.
- CD8+ T cells return to baseline at 6 months.
- * CD4+ Memory T cell (mostly Tcm) spared in comparison to naïve counterpart.

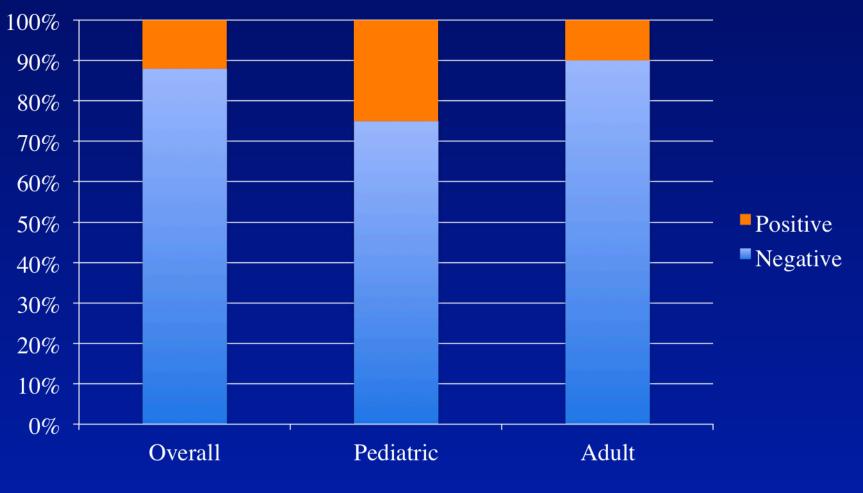
Wood, K. Transplanatation 2006 Remuzzi, G. J Am Soc Nephrol 2007

Extension of PC-01: CTOTC-01

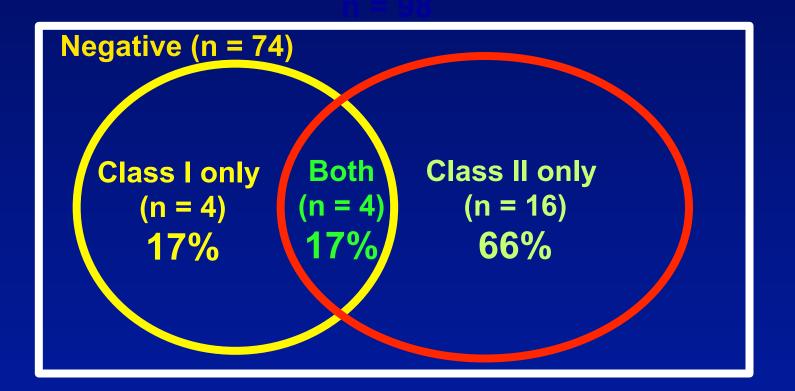

- 10 subjects from PC-01

 Stable at 2 years post transplant
 No ARE
 < 5% anti-HLA antibody
 Normal GFR
 - No CAN
- Taper MMF gradually to monotherapy with Sirolimus

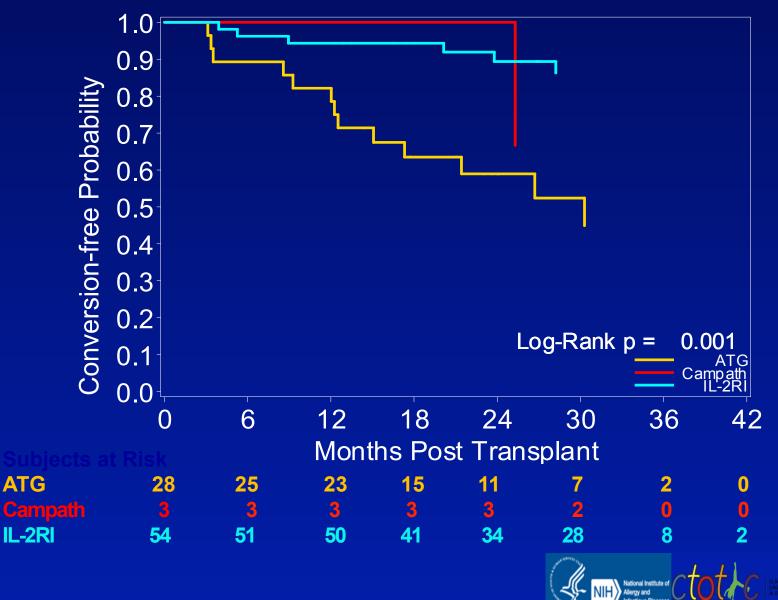
CTOT/CCTPT-02


- Combined adult/pediatric study to measure incidence of anti-HLA antibody production in unsensitized kidney transplant recipients
- 18 centers involved
- 694 subjects enrolled, 653 evaluated
- 79 subjects developed anti-HLA antibodies

Pediatric Subjects in CTOT/CCTPT-02

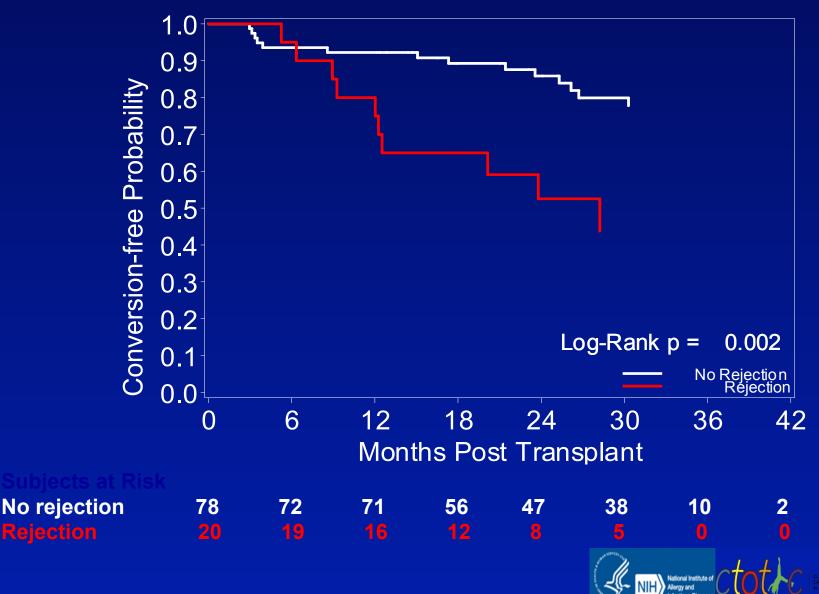


De Novo anti-HLA Antibody



HLA Conversion by Class

Induction Agent and HLA Ab Production Conversion-free Survival



Induction and Anti-HLA Antibody Production

	Odds Ratio (95% CI)	Р
Age	0.93(0.80-1.07)	0.288
No IL-2 RI vs. IL-2 RI	5.74 (1.97-16.72)	0.001

Acute Rejection and HLA Ab Production Conversion-free Survival

Acute Rejection and HLA antibody

	HLAAb Positive (n=24)	HLA Ab Negative (n=74)	Р
Acute rejection, n(%)	10 (42%)	10 (14%)	0.003
Cellular, n(%)	9 (38%)	10 (14%)	0.016
Antibody-mediated, n(%)	4 (17%)	0 (0%)	0.003

	Acute rejection among HLA Ab positives (n=10)
Rejection <i>before</i> Ab conversion	2 (20%)
Time before conversion (mo)	-6.3 ± 2.3
Rejection <u>after</u> Ab conversion	8 (80%)
Time after conversion (mo)	$+ 4.0 \pm 4.3$

Minimization the Pediatric Organ Transplant Recipient

- Infants and young children can have the best outcome of kidney transplantation of any age group
- Infants and young children undergoing kidney transplantation have unique conditions
- Infants and young children may be the ideal candidates for minimization protocols
- Monotherapy with Tacrolimus or Sirolimus

What Have We Accomplished?

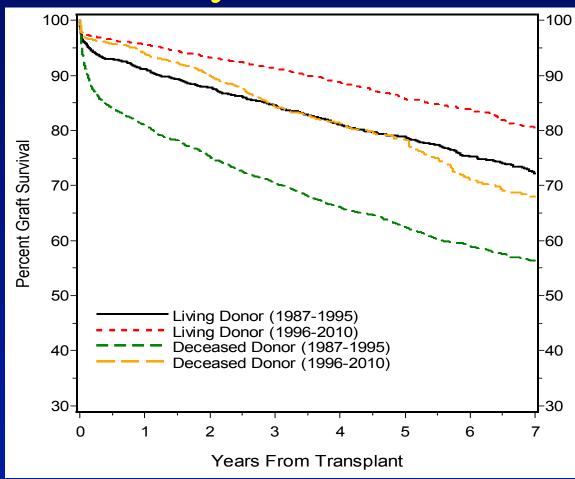
- Multiple studies have accomplished steroid avoidance or withdrawal in pediatric kidney transplantation (SW-01, SNS-01, TWIST, Pittsburgh monotherapy, PC-01)
- Some pediatric kidney transplant recipients can be withdrawn from CNIs and perhaps reach monotherapy
- Prior to CCTPT young children had the worst outcomes of all kidney transplant recipients; now they have the best

Conclusions

- Successes during past two decades
 - Overall early graft survival benefit
 - Marked improvement in success in young children
 - Reduction in ARE
 - Growth delay overall is not as severe
 - Steroid avoidance is possible
- Remaining challenges
 - Opportunistic viral infections
 - CNI/Steroid toxicities
 - CAN
 - Adherence to multi-drug protocols
 - Cost of chronic immunosuppression
 - Recurrent disease
 - Racial differences in outcome

What Are the Most Important Barriers to Successful Organ Transplantation in 2013? What Are Current Barriers to Success of Organ Transplants

- Children are at high risk for chronic viral infections, especially EBV
- Chronic Graft Loss continues and results in need for re-transplantation
 - CAN has not been defined or treated
- Recurrent disease has not been addressed
- Adolescents currently lose transplants at accelerated rate: Biology vs Adherence?
- African Americans have unacceptably high rates of graft loss and we don't know why

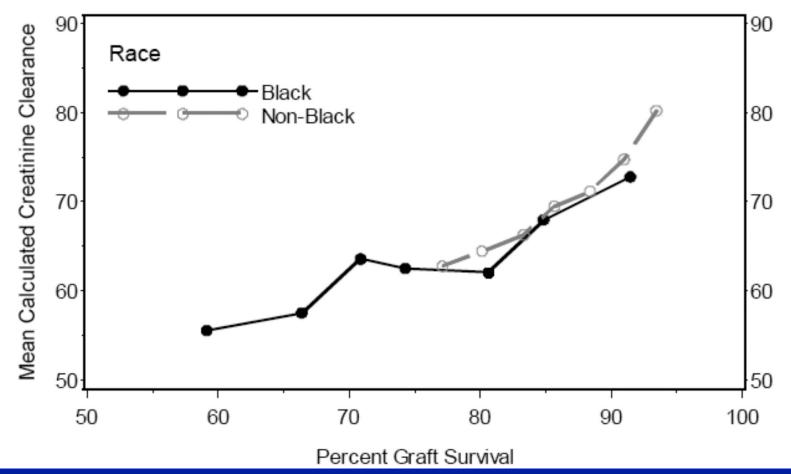

Viral Infections

- Viruses and treatments:
 - CMV: Valganciclovir prohylaxis and treatment
 - EBV: ? Valganciclovir, surveillance, IS modulation
 - Polyomavirus: Surveillance, IS modulation, ?
 meds
- Pediatric-specific problem of Donor +/ Recipient -

Chronic Allograft Nephropathy in Children

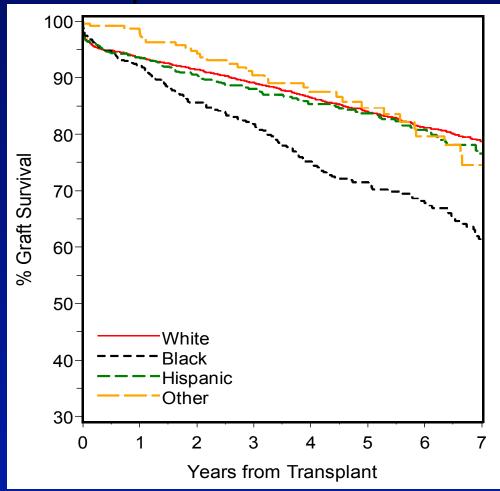
- Chronic Allograft Nephropathy (CAN) is the major limiting factor in pediatric kidney transplantation.
- Etiology of CAN:
 - Immunologic
 - Non-Immunologic

Pediatric Kidney Transplant Graft Survival by Source and Era

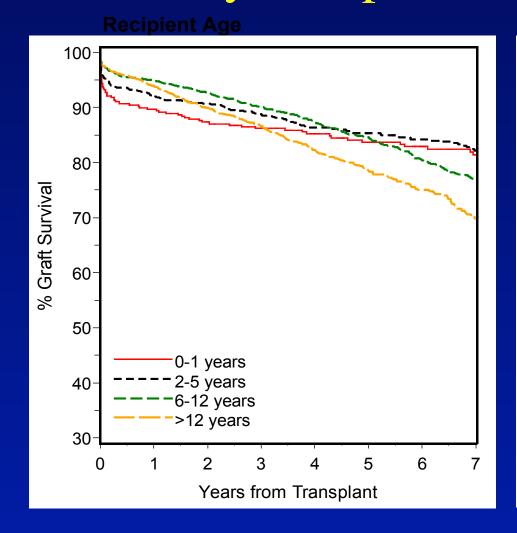


Immunologic Causes of CAN

- Insufficient Immunosuppression
 - Chronic Immunosuppression is inadequate
 - Late acute rejections
 - Race
 - Immunosuppression adherence
 - ?Pubertal changes

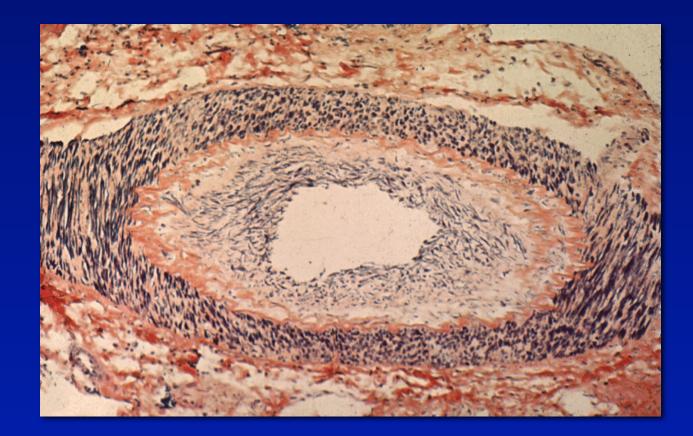

CAN and Race

DECEASED DONOR



Pedia

Recipient Race



Pediatric Kidney Transplant Graft Survival by Recipient Age

Chronic Allograft Nephropathy

Calcineurin Inhibitor Toxicity

Medication Adherence

- Rejection is an inevitable consequence of failure of adherence to immunosuppression protocol
- Solution to failure of IS adherence
 - Change adolescent behavior
 - Change immunosuppression delivery
 - Promise of belatacept

Recurrent Disease after Kidney Transplantation

- Atypical HUS: Eculizumab or Liver/ Kidney transplantation
- Oxalosis: Liver/Kidney transplantation
- FSGS: ???? Current approaches do not address pathophysiology
- Diabetes: Islet cell or Kidney/Pancreas transplantation

Conclusions

- Kidney Transplantation is currently the best treatment for children with ESRD and is likely to remain so for the foreseeable future
- Outcomes in kidney transplantation are continually improving
- Long-term consequences of kidney transplantation need increased attention

Conclusions

- Resolution of current barriers to successful transplantation require better understanding of their etiologies
- Application of new treatments requires careful pediatric trials
- Children are naïve to many viruses
- Children are more easily sensitized by transplantation than adults